
Cloud Observability Unified Query
Language (UQL) Cheat Sheet
Visit Cloud Observability Learning Portal for an intro to UQL 
and reference documentation

A UQL query is piped, made up of two or more stages that operate on the metric or span data returned by the 
Fetch stage. Subsequent stages operate on the data returned from the previous stage.

Stage 1: Fetch

request metric
 Stage 2: Align

rate  |
 Stage 3: Filter

checkout ==servicefilter   |
 Stage 4: Group & Aggregate

sumoperation[ ],group_by   |

Align (required)
Aligns points to regular time periods and can include an input 

window and output period. Output periods are required and only 

allowed on intermediate aligners. Delta and cumulative type 

metrics typically use the rate and delta aligners. Gauge metrics 

typically use reduce. Latest can only be used with gauges.

Rate (ops/s) of HTTP requests metric

metric http.requests | rate | group_by [], sum

Allowed values: rate delta latest reduce

Rate (ops/s) of HTTP requests metric, averaged over previous 5 mins

metric http.requests | rate 5m | group_by [],
sum 

Allowed values: s m h d w

Change in HTTP request metric

metric http.requests | delta | group_by [], sum

Change in HTTP requests over previous hour

metric http.requests | delta 1h | group_by [],
sum

Maximum value of each time series over previous hour

metric http.requests | reduce 1h, max | 
group_by [], sum

Allowed values: max min mean sum distribution count

count_nonzero std_dev

Maximum change over 1 minute of requests in the previous hour

metric http.requests | delta 1m, 1m | reduce
1h, max 

Explicit output period required for intermediate aligners (final 
aligners don't have any output period)

Gauge points aligned to a consistent period

metric memory.usage | latest | group_by [], sum

Group by (required for spans & logs time 
series queries)
Separates time series into groups by the values of the given 
attributes, then for each value group, combines the time series 
using a reducer. Queries for span and log time series data must
include a group_by. To get a single time series, use an empty
group_by value, reduced by the sum.

Time series for memory usage, by host

metric kubernetes.memory.usage | latest | 
group_by [host], sum

Allowed values: max min mean sum distribution count

count_nonzero std_dev

Maximum value of the rate of requests per second over a two 
minute period, grouped by the region and zone

metric requests | rate 2m |  group_by [region, 
zone], max

p95 latency for spans from the iOS service

spans latency | delta | filter service == iOS |
group_by [], sum | point percentile(value, 95) 

Rate of spans per second on the crouton service, grouped by 
customer

spans count | rate | filter service == crouton 
| group_by [customer], sum

Join
Combines two or more sets of time series by matching 
attributes, then applies arithmetic to create a single set of time 
series. A join can result in a very large results set when labels 
have high cardinality. Using group_by before a join reduces the 
labels the join will match on.

Fraction of requests that were successful, broken down by 
HTTP method (for example, GET, PUT)

 
with
  successes  = metric http.requests.success |
delta 1m | group_by [http.method], sum; 
  total = metric http.requests.total | delta 
1m | group_by [http.method], sum; 
join successes/total, successes = 0

Percent of kube memory limits currently being used by 
dataingest, broken down by container and pod

with 
  usage = metric kubernetes.memory.usage | 
latest | filter kube_app == dataingest | 
group_by [pod_name, container_name], sum; 
  limits = metric kubernetes.memory.limits |
latest | filter kube_app == dataingest |
group_by [pod_name, container_name], sum;  
join usage / limits * 100

Point
Takes the input value of each data point (called value) and 
applies an expression to it.

p95 value of the distribution metric my.hist

metric my.hist | delta | group_by [], sum |
point percentile(value, 95) 

Boolean-valued time series where a point is true if the value of 
my.metric is greater than 5

metric my.metric | latest | group_by [], sum | 
point value > 5

Squared value of each point in my.metric

metric my.metric | latest | group_by [], sum |
point pow(value, 2) 

p99 latency for spans from the database-update operation on 
the warehouse service

spans latency | delta | filter service = 
warehouse && operation = database-update | 
group_by [], sum | point percentile(value, 99) 

Multiple latencies of the database-update operation on the 
warehouse service

spans latency | delta | filter service = 
warehouse && operation = database-update | 
group_by [], sum | point percentile(value, 
99.9), percentile(value, 99), 
percentile(value, 90)

Allowed values: * / + - pow(a,b) percentile(a,b)

dist_sum(a) dist_count(a)

Fetch (required)
Returns the specified data type (metric or spans). Metric 
requires the metric name. Spans requires a computation type.

Fetching the rate (ops/s) of HTTP requests metric

metric http.requests | rate | group_by [], sum

Fetching the p95 latency of all spans

spans latency | delta | group_by [], sum | 
point percentile(value, 95)

Fetch all logs where the service equals web logs

logs
| filter service.name == "web"

Allowed values: latency count lightstep.bytesize

Fetching the count of all spans as a rate (ops/s)

spans count | rate | group_by [], sum

Fetch the rate of all logs that contain an error in severity_text 
grouped by service name (logs/s)

logs count
| filter severity_text == "error"
| rate
| group_by [service.name], sum

Filter
Drops data that doesn't match the predicate.

Rate (ops/s) of HTTP requests only if from the checkout 
service and in the us-east-1 time zone

metric http.requests | rate 1m | filter 
service == checkout && zone == us-east-1 | 
group_by [], sum

Allowed values: = >== >= < !<= != && ||

=~ (regex match)

defined

contains phrase_matchundefined !~ (regex no match)

p95 latency for spans from the iOS service

spans latency | delta | filter service == iOS |
group_by [], sum | point percentile(value, 95)

p95 latency for spans from the iOS service and the customer 
Packing Kings

 spans latency | delta |  filter service == iOS 
&& customer == "Packing Kings" | group_by [], 
sum | point percentile(value, 95)

Quotes required for string values with spaces

Time shift

Moves each point in the time series forwards by the amount of 
time specified in the duration. A time_shift doesn't have to 
immediately follow a fetch operation, but it must come before a 
window operation or group_by.

Difference in request rate from one week prior

with current = metric requests | rate | 
group_by [customer, method], sum; last_week = 
metric requests | time_shift 7d | rate | 
group_by [customer, method], sum; 
join current - last_week

Point filter

Keeps all points that match the predicate and removes all other 
points. This will produce gaps in the time series or remove time 
series altogether that don’t match the predicate.

Latency values for services where the point value is greater 
than 1 second

spans latency | delta | group_by [service], 
sum | point percentile(value, 99) |
point_filter value > 1000

Requests where the the point value is less than 1,000 requests

metric requests | delta | point_filter value < 1000



© 2023 ServiceNow, Inc. All rights reserved. ServiceNow, the ServiceNow logo, Now, Now Platform, and other ServiceNow marks are trademarks and/or registered trademarks of ServiceNow, Inc. in the United States and/or other 
countries. Other company names, product names, and logos may be trademarks of the respective companies with which they are associated.

Alerts Cookbook

Seasonality alerts
Use this to get alerted on the historical comparison for <metric> between now and <lookback> 
duration ago. For example, to compare now and a week ago, use time_shift 7d.

Allowed values for time_shift: s m h d w

<smoothingDuration> defines how much smoothing to apply to the historical data. The more 
smoothing, the less likely spikes in historical data will cause your alert to trigger. Too large a value 
here may cause your seasonality to be lost. 

Gauge metrics

with
  a = metric <metric> | reduce <smoothingDuration>, mean | group_by [], 
mean;
  b = metric <metric> | time_shift <lookback> | reduce <smoothingDuration>,
mean | group_by [], mean; 
join ((a-b)/b) * 100

Delta/Cumulative scalar metrics

with
  a = metric <metric> | rate <smoothingDuration> | group_by [], mean; 
  b = metric <metric> | time_shift <lookback> | rate <smoothingDuration> |
group_by [], mean; 
join ((a-b)/b) * 100

Delta/Cumulative distribution metrics

with
  a = metric <metric> | delta <smoothingDuration> | group_by [], sum | 
point percentile(value, 95); 
  b = metric <metric> | time_shift <lookback> | delta <smoothingDuration> |
group_by [], sum | point percentile(value, 95); 
join ((a-b)/b) * 100

Direct comparison alerts
Use this to get alerted on the comparison between <metricA> and <metricB>. For example, 
SQS messages in vs. out.

.

Gauge metrics

with  
  a = metric <metricA> | latest | group_by [], mean; 
  b = metric <metricB> | latest | group_by [], mean; 
join a - b

Delta/Cumulative scalar metrics

with  
  a = metric <metricA> | delta | group_by [], sum; 
  b = metric <metricB> | delta | group_by [], sum; 
join a - b

Cloud Observability Unified Query
Language (UQL) Cheat Sheet
Visit Cloud Observability Learning Portal for an intro to UQL 
and reference documentation

A UQL query is piped, made up of two or more stages that operate on the metric or span data returned by the 
Fetch stage. Subsequent stages operate on the data returned from the previous stage.

Stage 1: Fetch

request metric
 Stage 2: Align

rate  |
 Stage 3: Filter

checkout ==servicefilter   |
 Stage 4: Group & Aggregate

sumoperation[ ],group_by   |


